REPORT DOCUMENTATION PAGE
: i AFRL-SR-BL-TR-00-

Public reporting burden for this collection of information is estimated to average 1 hour per response ata sources,
gathering and maintaining the data needed, and completing and reviewing the collection of informati 2 spect of this
collection of information, including suggestions for reducing this burden s Wagshington Headquarter é @ / 15 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budg 303

1. AGENCY USE ONLY (Leave blank) |2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

' 1 June 1996 - 30 November 1998

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
A Formal Approach for the Design of Real-Time Distributed Systems F49620-96-1-0221

6. AUTHORI(S)

Michael Evangelist

7. PERFORMING ORGANIZATION NAME(S} AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Florida International University REPORT NUMBER

Sponsored Research Office
University Park- PC 539
Miami, FL 33199

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AFOSR AGENCY REPORT NUMBER
801 North Randolph Street, Room 732

Arlington, VA 22203-1977 F49620-96-1-0221

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release, distribution unlimited

13. ABSTRACT (Maximum 200 words)

Real-time distributed systems are the backbone of the US Air Force computational infrastructure. The inherent complexity of]
these systems and their mission-critical nature present a difficult engineering challenge at every point in the lifecycle. This
research is to lay a foundation for a systematic engineering methodology. In particular, our effort consists of two inter-related
aspects. The first is to develop a scalable and flexible model and techniques for representing and analyzing distributed
real-time architectures; and the second is to extend our previous work in automatic (correctness-preserving) transformations.
The first part will proceed by integrating aspects of Petri net theory with a generalized object model to obtain a coherent
formal approach to architectural representation. The second attacks the problems of scalability and excessive manual labor in
the use of formal methods. In this final report, we summarizc the results and accomplishments of our research based on the

120001120 194

14. SUBJECT TERMS 15. NUMBER OF PAGES

7
16. PRICE CODE

17. SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION | 19. SECURITY CLASSIFICATION [20. LIMITATION OF ABSTRACT]
OF REPORT OF THIS PAGE OF ABSTRACT

Standard Form 298§Rev. 2-89) {EG)
Prescribed by ANSI Std. 239.18
Designed using Perform Pro, WHS/DIOR, Oct 94

FINAL TECHNICAL AND INVENTION REPORT

AFOSR Grant No.: F49620-96-1-0221

Project Title: A Formal Approach for the Design of Real-Time Distributed Systems
Principal Investigators: PI. Michael Evangelist, Co-Pls: Yi Deng, Paul C. Attie
Organization: School of Computer Science, Florida International University

1. Overview

Real-time distributed systems are the backbone of the US Air Force computational
infrastructure. The inherent complexity of these systems and their mission-critical nature
present a difficult engineering challenge at every point in the lifecycle. This research is to lay a
foundation for a systematic engineering methodology. In particular, our effort consists of two
inter-related aspects. The first is to develop a scalable and flexible model and techniques for
representing and analyzing distributed real-time architectures; and the second is to extend our
previous work in automatic (correctness-preserving) transformations. The first part will
proceed by integrating aspects of Petri net theory with a generalized object model to obtain a
coherent formal approach to architectural representation. The second attacks the problems of
scalability and excessive manual labor in the use of formal methods. In this final report, we
summarize the results and accomplishments of our research based on the above two aspects of
this effort.

2. Architectural Modeling and Analysis of Real-Time Systems
2.1. Problem Statement and Objective

Real-time systems are difficult to design because of several interlocking factors: they are often
mission-critical in nature; they are complex and distributed reactive systems; and- their
behavior is time-dependent. To ensure the dependability of the system, rigorous formal design
methods are needed. For a formal technique to be applicable to real world complex problems,
however, an engineering methodology for applying the formal techniques must be developed.
Our research in this project investigates open problems in the architectural representation,
modeling, and design of distributed real-time systems, and is built upon our previous research
results and technology developed under the sponsorship from NSF and USAF Rome
Laboratory.

In particular, our research has three objectives. The first is to develop an integrated and
incremental process of architecture modeling and analysis driven by system requirements or
constraints. The second is to systematically ensure traceability between system requirements
and design decisions, and to verify the conformance of the design to the requirements. The
third is to effectively manage complexity in modeling and analysis, which implies that the
model itself must be highly adaptive and changeable.

2.2. Major Accomplishments and New Findings
2.2.1. A Software Architectural Model

We have developed a Software Architectural Model (SAM) as the basis for modeling,
designing and analyzing the architectural of real-time distributed systems. SAM provides a
multiple leveled model and notation for describing different aspects of architecture level design
such as structure, behavior and constraints. Its specification model can be characterized from
several dimensions:

(1) Structurally, software architecture is specified as multi-layered compositions of
components and connectors, which can be refined and analyzed individually.

(2) In SAM, the construction and refinement of architectural model is driven by system
requirements (specified as architectural constraints) and their propagation. At each design
level, SAM specifies not only the (operational) composition of system components, but
also the (descriptive) constraints that the components and their composition must satisfy.
Refinement goes in lockstep with the propagation of the constraints. SAM provides .
certain integrity rules (e.g. structural integrity, constraint consistency and refinement
consistency) to assure design consistency. (More such rules are under development.)

(3) Notation-wise, SAM is integrative, which employs both model-oriented formalism (Petri
nets) and property-oriented formalism (temporal logic). Software architecture is specified
by a set-theoretical recursive description, where Petri nets are used to describe
components and connectors, and temporal logic to specify architectural constraints. These -
two complementary notations are seamlessly integrated under the SAM framework. We
have successfully applied SAM for the modeling and analysis of command & control
systems and flexible manufacturing systems.

2.2.2. Timing Analysis of Real-Time System Architectures

To real time systems, timing constraints on end-to-end delay are the most important system-
‘wide constraints established on the systems’ external inputs and outputs. To ensure these
original constraints are satisfied, each of constituent components will be subject to a set of
derived intermediate component constraints. Since the original system-wide constraints allow
many possibilities for the intermediate constraints, and designers derive them based on their
understanding on the systems, an important issue is how to guarantee the consistency between
system-wide constraints and intermediate component constraints.

Based on the above features of the SAM framework, we have developed a constraint-driven
refinement and verification method to verify the consistency and conformance of system
design against real-time constraints. Our analysis techniques combines refinement and analysis
into an incremental process. Analysis is driven by constraint verification and carried out
through the reachability analysis on Petri nets of temporal constraints with respect to reachable
states.

First, based on SAM approach, we build a real time system’s architecture model, formally
specify its system-wide constraints by temporal formulae, and derive/define intermediate
constraints for each component. Then, we derive a small and constant-sized time Petri net
(TPN) model, which we call component requirement model, by translating the temporal
formula representing the component constraint into its TPN form. Next, we plug the set of
newly created TPNs into the real time system architecture model (also represented as a TPN),
which results in a complete, i.e. executable net model. This TPN represents the model of the
component constraints based on the. system-wide architecture. In other words, if this TPN
satisfies the system-wide constraints, then the component constraints are consistent to the
system-wide constraints based on the real time system architecture. Finally, we verify if the
constraint model satisfies the system-wide constraint patterns. A number of available
techniques, e.g. reachability analysis, can be used for this verification.

There are three noteworthy features in our analysis technique:

(1) The analysis is compositional, in which a verified component is reduced to a much smaller
Petri net based on the constraints imposed on the component. The architecture is
consequently viewed as a composition of these smaller nets, and analyzed accordingly.

(2) The analysis is incremental across different design levels such that it is performed
separately according to the different levels of abstraction.

(3) It is driven by satisfaction of architectural constraints, which is monitored during the
construction of reachability tree, and terminated as soon as the goal is reached. It avoids
the generation of a complete reachability tree and thus improves the efficiency. '

2.2.3. Other Related Results

Related to our work on SAM, we have also developed scalable and compositional analysis
techniques for performance evaluation of complex transportation networks and for throughput
analysis of discrete event systems.

3. Correctness-Preserving Transformations
3.1. Problem Statement and Objective

We address the problem of refining formal specifications into code. Our approach is one of
successive refinement using correctness-preserving transformations: we begin with an initial
specification which we refine successively (by applying transformations) until a suitable low-
level solution, from which code can be easily generated, is reached. The application of
transformations is guided by the designer, and some of the transformations themselves may be
implemented manually.

This work provides a means of verifying behavioral properties of complex distributed systems,
and also attacks the problems of scalability and excessive manual labor in the use of formal
methods. The objectives of this research are (1) to produce a useful set of correctness-
preserving transformations, and (2) to contribute to a theoretical basis for designing and
validating correctness-preserving transformations.

We also aim to maximize the degree of automation of the transformation process by ensuring
that most transformations have applicability conditions that can be checked automatically.

3.2. Major Accomplishments and New Findings

Our major accomplishments are transformations for (1) producing a large concurrent program
from many small concurrent rograms, i.c., a method of automatically composing many
programs together, (2) producing an atomic read/write program from a high-atomicity
program, and (3) producing a fault-tolerant program from a fault-intolerant one and a fault-
tolerance specification.

We have also devised a general method for refining the liveness properties of distributed
systems. This work is a contribution to objective (2) above. We discuss each of these
accomplishments in turn.

3.2.1 Automatic Composition of Small Concurrent Programs

Methods for synthesizing large concurrent programs from specifications (expressed in, for
example, temporal logic) have been proposed and investigated in the literature. An important
advantage of automatic synthesis methods is that they obviate the need to manually compose a
program and manually construct a proof of its correctness. One only has to formulate a precise
problem specification; the synthesis method then mechanically constructs a correct solution. A
serious drawback of these methods in practice, however, is that they suffer from the state
explosion problem. To synthesize a concurrent system consisting of K sequential processes,
each having N states in its local transition diagram, requires construction of the global product-
machine having at least N°K global states in general. This exponential growth in K makes it
infeasible to synthesize systems composed of more than 2 or 3 processes.

Our results show how to efficiently synthesize large concurrent systems. Our method does not
explicitly construct the global state transition diagram of the program to be synthesized, and
thereby avoids state explosion. Instead, it constructs a state transition diagram for each pair of
component processes (of the program) that interact. This *‘pair-program” embodies all possible
interactions of the two processes. Our method proceeds in two steps. First, we construct a pair-
program for every pair of ‘‘connected” processes, and analyze these pair-programs for desired
correctness properties. We then take the ‘pair processes” of the pair-programs, and ‘‘compose”
them in a certain way to synthesize the large concurrent program. This composition is
essentially an automatic correctness-preserving transformation: the correctness properties of
the pair-programs are preserved in the large program, and the large program is obtained by
syntactically combining the pair-programs.

3.2.2. Synthesis of an Atomic Read/Write Concurrent Program from a High-Atomicity
Concurrent Program

Shared memory programs that use high-atomicity primitives (e.g., read and write a large
number of shared variables in one atomic step) are easier to design and reason about than

programs that read or write only a single variable at a time (atomic read/write programs). Such
high-atomicity programs can be regarded as being at an intermediate level between a
specification and efficient code. We have devised a transformation from high-atomicity
programs to atomic read/write programs. The method first refines the high-atomicity program
in a straightforward way, which may introduce executions that violate the specification. It then
generates the state-transition graph of the refined high-atomicity program, and eliminates all
portions of this graph that violate the specification. Finally, it extracts a correct atomic
read/write program from the refined graph.

3.2.3. Synthesis of a Fault-Tolerant Program from a Fault-Intolerant Program and a Fault-
Tolerance Specification

We show how to synthesize a fault-tolerant concurrent program from a fault-intolerant
program and a fault-tolerance specification. Our method generates the global-state transition
diagram of the fault-intolerant program, adds to it all of the states reached by the occurrence of
faults, and synthesizes the required recovery transitions from these fault-states. Thus, we
transform a fault-intolerant program into a fault-tolerant one.

3.2.4. Refining Liveness Properties of Distributed Systems

Simulation relations have been used extensively to reason about concurrent program
refinement: if every transition of an implementation has a corresponding transition at the
specification level, then we say that the specification "simulates” the implementation. This -
implies that the possible behaviors of the implementation are a subset of the possible behaviors
of the specification. We take this notion of behavior inclusion (technically speaking, trace
inclusion) to be our notion of a correct refinement.

The great benefit of simulation relations is that they reduce reasoning about entire executions
to reasoning about individual transitions only. Clearly, this is a significant reduction in the
amount of formal labor required. To date however, this benefit has been realized for safety
properties only; showing that liveness properties are preserved by the implementation still
required reasoning over entire executions.

Despite the fact that reasoning about liveness is usually associated with reasoning over entire
executions, variant functions, faimess etc., our method extends the simulation-relation method
to liveness properties in such a way that it requires reasoning only over individual transitions.
It thus presents a significant methodological advance over current methods.

4. Software Tools

None .

5. Person(s) Supported

Alan Spector, Esteban Jimenez, Chun Jin (graduate students)

(o))

“10.

11.

12.

13.

. Publications

P.C. Attie and E.A. Emerson, ‘‘Synthesis of concurrent programs for an atomic read/write
model of computation,” to appear in ACM Transactions on Programming Languages and
Systems.

P.C. Attie, "Synthesis of large concurrent programs via pairwise composition,” Proceedings
of CONCUR99: 10th International Conference on Concurrency Theory.

P.C. Attie, "Liveness-preserving simulation relations," Proceedings of the ACM
Symposium on the Principles of Distributed Computing (PODC) 1999.

P.C. Attie and E.A. Emerson, ‘‘Synthesis of concurrent systems with many similar
processes,” ACM Transactions on Programming Languages and Systems, 20(1), January
1998, 51--115.

A. Arora, P.C. Attie, and E.A. Emerson, "Synthesis of fault-tolerant concurrent programs
(extended abstract),” ACM Symposium on the Principles of Distributed Computing
(PODC) 1998.

Y. Deng, J. Wang and R. Sinha, “Integrated-Architectural Modeling of Real-Time
Concurrent Systems with Application in FMS”, Proceedings of International Conference on
Software Engineering and Knowledge Engineering, June 1998, 34-43.

J. Wang, Y. Deng and X. He, “A formal architectural specification model for real-time
systems design”, Proceedings of the IASTED Conference on Software Engineering,
October 1998, 11-14.

J. Wang and Y. Deng, “Component-level reduction rules for time Petri nets with
application in C2 systems”, Proceedings of 1998 IEEE International Conference on
Systems, Man and Cybermetics, October 1998, 125-129.

Y. Deng and J. Wang, “Integrated Architectural Modeling and Analysis for High
Assurance Command and Control System Design”, Proceedings of 3" International High
Assurance Systems Engineering Symposium, November 1998, 270-278.

Y. Deng, J. Wang and R. Sinha, “Incremental Architectural Modeling and Verification of
Real-Time Concurrent Systems”, Proceedings of 2™ International Conference on Formal
Engineering Methods, December 1998, 26-34.

Y. Deng and J. Wang, “Integrated architectural modeling and analysis for high-assurance
command and control system design”, Annals of Software Engineering, Vol. 7, 1999, 47-
70. '

J. Wang and Y. Deng, “Incremental modeling and verification of flexible manufacturing
systems”, Journal of Intelligent Manufacturing, Vol. 10, 1999, 485-502.

J. Wang, X. He and Y. Deng, "Introducing Software Architectural Specification and
Analysis in SAM through an Example", Information and Software Technology - An
International Journal, 41(7), 451-567, 1999

14.

15.

16.

17.

J. Wang, M. Zhou and Y. Deng, “Throughput analysis of discrete event systems based on
stochastic Petri nets”, International Journal of Intelligent Control and Systems, 3(3), 1999,
343-358.

J. Wang, C. Jin and Y. Deng, “Performance Analysis of Traffic Control System Based on
Stochastic Timed Petri Net Models”, Proceedings of 23" International Conference on
Computer Software and Applications Conference (COMPSAC), October 1999, 436-441.

J. Wang, C. Jin and Y. Deng, "Performance Evaluation of Traffic Control Networks via
Stochastic Time Petri Nets", Proceedings of IEEE International Conference on Engineering
of Complex Computer Systems, Las Vegas, Nevada, October 1999, 77-85.

J. Wang, G. Xu and Y. Deng, “Reachability analysis of real-time systems using time Petri
nets”, IEEE Transactions on Systems, Man and Cybemetics, in press.

